** Latest additions are flagged with two asterisks on each side. ** Updated frequently, and most recently 8 February 2015.
To access only the latest information (on most browsers), use CTRL-F, type two asterisks into the “find” box, and hit “Return” or “Enter.” Note that this essay has grown from a few thousand words in January 2013 to the current massive missive.
A German-language version of this essay, updated 26 June 2014, is available in pdf form here. A Russian version focused on self-reinforcing feedback loops, courtesy of Robin Westenra and colleagues, is here. A Polish version, updated often, is available here.
Happy reading.
I’m often accused of cherry picking the information in this ever-growing essay. I plead guilty, and explain myself in this essay posted 30 January 2014. My critics tend to focus on me and my lack of standing in the scientific community, to which I respond with the words of John W. Farley: “The scientific case is not dependent on citation of authority, no matter how distinguished the authority may be. The case is dependent upon experimental evidence, logic, and reason.” In other words, stop targeting the messenger.
American actress Lily Tomlin is credited with the expression, “No matter how cynical you become, it’s never enough to keep up.” With respect to climate science, my own efforts to stay abreast are blown away every week by new data, models, and assessments. It seems no matter how dire the situation becomes, it only gets worse when I check the latest reports.
The response of politicians, heads of non-governmental organizations, and corporate leaders remains the same, even though they surely know everything in this essay. They’re mired in the dank Swamp of Nothingness. Margaret Beckett, former U.K. foreign secretary said in September 2008 on BBC America television, with respect to climate change: “Will it harm our children? Will it harm our grandchildren? Actually, it’s a problem for us today.” As Halldor Thorgeirsson, a senior director with the United Nations Framework Convention on Climate Change, said on 17 September 2013: “We are failing as an international community. We are not on track.” These are the people who know about, and presumably could do something about, our ongoing race to disaster (if only to sound the alarm). Tomlin’s line is never more germane than when thinking about their pursuit of a buck at the expense of life on Earth.
Worse than the aforementioned trolls are the media. Fully captured by corporations and the corporate states, the media continue to dance around the issue of climate change. Occasionally a forthright piece is published, but it generally points in the wrong direction, such as suggesting climate scientists and activists be killed (e.g., James Delingpole’s 7 April 2013 hate-filled article in the Telegraph). Leading mainstream outlets routinely mislead the public.
I’m often told Earth can’t possibly be responsive enough to climate change to make any difference to us. But, as the 27 May 2014 headline at Skeptical Science points out, “Rapid climate changes more deadly than asteroid impacts in Earth’s past.” That’s correct: climate change is more deadly than asteroids.
Unimpressed with evidence and public opinion, some scientists forge on, illustrating that the progressive perspective often means progresssing toward the cliff’s edge. As reported in the 27 November 2014 issue of New Scientist, initial efforts to cool the planet via geo-engineering have taken shape and might begin in two years.
Gradual change is not guaranteed, as pointed out by the U.S. National Academy of Sciences in December 2013: “The history of climate on the planet — as read in archives such as tree rings, ocean sediments, and ice cores — is punctuated with large changes that occurred rapidly, over the course of decades to as little as a few years.” The December 2013 report echoes one from Wood Hole Oceanographic Institution more than a decade earlier. Writing for the 3 September 2012 issue of Global Policy, Michael Jennings concludes that “a suite of amplifying feedback mechanisms, such as massive methane leaks from the sub-sea Arctic Ocean, have engaged and are probably unstoppable.” During a follow-up interview with Alex Smith on Radio Ecoshock, Jennings admits that “Earth’s climate is already beyond the worst scenarios.” Truth-out piles on 18 March 2014: “‘climate change'” is not the most critical issue facing society today; abrupt climate change is.” Skeptical Science finally catches up to reality on 2 April 2014 with an essay titled, “Alarming new study makes today’s climate change more comparable to Earth’s worst mass extinction.” The conclusion from this conservative source: “Until recently the scale of the Permian Mass Extinction was seen as just too massive, its duration far too long, and dating too imprecise for a sensible comparison to be made with today’s climate change. No longer. Piling on in January 2015, a paper in press in the journal Progress in Physical Geography concludes the abstract with this line: “All the evidence indicates that most long-term climate change occurs in sudden jumps rather than in incremental changes.” The Brisbane Times catches up with abrupt climate change on 18 August 2014: “Let us be clear: if these methane escapes continue to grow, the risk is they could drive the planet into accelerated or ‘runaway’ global warming. The last time this happened, 50 million years ago, global temperatures rose by an estimated 9 or 10 degrees. In the present context, that would mean the end of the world’s food supply.” Robert Scribbler finally joins the uprising on 29 October 2014: “What is clear is that feedbacks to the human heat forcing are now starting to become plainly visible. That they are providing evidence of a stronger release from some sources on a yearly basis.”
As reported by Robert Scribbler on 22 May 2014, “global sea surface temperature anomalies spiked to an amazing +1.25 degrees Celsius above the, already warmer than normal, 1979 to 2000 average. This departure is about 1.7 degrees C above 1880 levels — an extraordinary reading that signals the world may well be entering a rapid warming phase.”
If you’re too busy to read the evidence presented below, here’s the bottom line: On a planet 4 C hotter than baseline, all we can prepare for is human extinction (from Oliver Tickell’s 2008 synthesis in the Guardian). Tickell is taking a conservative approach, considering humans have not been present at 3.3 C or more above baseline (i.e., the beginning of the Industrial Revolution, commonly accepted as 1750). I cannot imagine a scenario involving a rapid rise in global-average temperature and also habitat for humans. Neither can Australian climate scientist Clive Hamilton, based on his 17 June 2014 response to Andrew Revkin’s fantasy-based hopium. According to the World Bank’s 2012 report, “Turn down the heat: why a 4°C warmer world must be avoided” and an informed assessment of “BP Energy Outlook 2030” put together by Barry Saxifrage for the Vancouver Observer, our path leads directly to the 4 C mark. The conservative International Energy Agency throws in the towel on avoiding 4 C in this video from June 2014 (check the 25-minute mark). The 19th Conference of the Parties of the UN Framework Convention on Climate Change (COP 19), held in November 2013 in Warsaw, Poland, was warned by professor of climatology Mark Maslin: “We are already planning for a 4°C world because that is where we are heading. I do not know of any scientists who do not believe that.” Among well-regarded climate scientists who think a 4 C world is unavoidable, based solely on atmospheric carbon dioxide, is Cambridge University’s Professor of Ocean Physics and Head of the Polar Ocean Physics Group in the Department of Applied Mathematics, Dr. Peter Wadhams (check the 51-second mark in this 8 August 2014 video), who says: “…the carbon dioxide that we put into the atmosphere, which now exceeded 400 parts per million, is sufficient, if you don’t add any more, to actually raise global temperatures in the end by about four degrees.” Adding to planetary misery is a paper in the 16 December 2013 issue of the Proceedings of the National Academy of Sciencesconcluding that 4 C terminates the ability of Earth’s vegetation to sequester atmospheric carbon dioxide.
A 550ppm CO
2 level correlates to +9° C temperature rise, which was previously enough to trigger self-reinforcing climate change feedback loops leading to the Permian Extinction Event with 95% planetary die-off. Even more worrying is that current levels of atmospheric methane (>1820ppb) indicate near-term human extinction.
Finally, far too late, the New Yorker posits a relevant question on 5 November 2013: Is It Too Late to Prepare for Climate Change? Joining the too-little, too-late gang, the Geological Society of London points out on 10 December 2013 that Earth’s climate could be twice as sensitive to atmospheric carbon as previously believed. New Scientist piles on in March 2014, pointing out that planetary warming is far more sensitive to atmospheric carbon dioxide concentration than indicated by past reports. As usual and expected, carbon dioxide emissions set a record again in 2013, the fifth-warming year on record and the second-warmest year without an El Nino. Another El Niño is on the way, as pointed out by Robert Scribbler on 6 March 2014: “Should the predicted El Nino emerge and be as strong as average model values indicate, global surface temperatures could rise by between .05 and .15 degrees Celsius …. This would be a substantial jump for a single year, resulting in yet one more large shift toward an ever more extreme climate.” Indeed, the upper end of the projected range takes us to 1 C warmer than baseline.
Is There a Way Out?
Rate of temperature change today (red) and in the PETM (blue). Temperature rose steadily in the PETM due to the slow release of greenhouse gas (around 2 billion tons per year). Today, fossil fuel burning is leading to 30 billion tons of carbon released into the atmosphere every year, driving temperature up at an incredible rate. Figure from http://www.wunderground.com/climate/PETM.asp?MR=1
All of the above information fails to include the excellent work by Tim Garrett, which points out that only complete collapse avoids runaway greenhouse. Garrett reached the conclusion in a paper submitted in 2007 (personal communication) and published online by Climatic Change in November 2009 (outcry from civilized scientists delayed formal publication until February 2011). The paper remains largely ignored by the scientific community, having been cited fewer than thirty times since its publication.
According to Yvo de Boer, who was executive secretary of the United Nations Framework Convention on Climate Change in 2009, when attempts to reach a deal at a summit in Copenhagen crumbled with a rift between industrialized and developing nations, “the only way that a 2015 agreement can achieve a 2-degree goal is to shut down the whole global economy.” Politicians finally have caught up with Tim Garrett’s excellent paper in Climatic Change.
From the Associated Press on 1 December 2014 comes a story headlined, “Climate funds for coal highlight lack of UN rules.” The article points out the difficulty associated with using tools from industrial civilization to address a predicament created by industrial civilization: “Climate finance is critical to any global climate deal, and rich countries have pledged billions of dollars toward it in U.N. climate talks, which resume Monday in Lima, Peru. Yet there is no watchdog agency that ensures the money is spent in the most effective way. There’s not even a common definition on what climate finance is.” The bottom line from this story: About a billion dollars intended to mitigate climate change has been used to fund coal-fired power plants, the worst emitter of carbon dioxide on the planet.
Writing for the Arctic News Group, John Davies concludes: “The world is probably at the start of a runaway Greenhouse Event which will end most human life on Earth before 2040.” He considers only atmospheric carbon dioxide concentration, not the many self-reinforcing feedback loops described below. Writing on 28 November 2013 and tacking on only one feedback loop — methane release from the Arctic Ocean — Sam Carana expects global temperature anomalies up to 20 C 2050 (an anomaly is an aberration, or deviation from long-term average). Small wonder atmospheric methane can cause such global catastrophe considering its dramatic rise during the last few years, as elucidated by Carana on 5 December 2013 in the figure below.
Supporters of carbon farming — the nonsensical notion that industrial civilization can be used to overcome a predicament created by industrial civilization — claim all we need to do is fill the desert with nonnative plants to the tune of an area three-quarters the size of the United States. And, they say, we’ll be able to lower atmospheric carbon dioxide by a whopping 17.5 ppm in only two decades. Well, how exciting. At that blistering pace, atmospheric carbon dioxide will be all the way back down to the reasonably safe level of 280 ppm in only 140 years, more than a century after humans are likely to become extinct from climate change. And, based on research published in the 2 May 2014 issue of Science, soil carbon storage has been over-estimated and is reduced as atmospheric carbon dioxide concentration rises.
According to the plan presented in the 23 August 2013 issue of Scientific American, the nonnative plants, irrigated with increasingly rare fresh water pumped by increasingly rare fossil-fuel energy, will sequester carbon sufficient to overcome contemporary emissions. Never mind the emissions resulting from pumping the water, or the desirability of converting thriving deserts into monocultures, or the notion of maintaining industrial civilization at the expense of non-civilized humans and non-human species. Instead, ponder one simple thought: When the nonnative plants die, they will emit back into the atmosphere essentially all the carbon they sequestered. A tiny bit of the carbon will be stored in the soil. The rest goes into the atmosphere as a result of decomposition.
This essay brings attention to recent projections and self-reinforcing feedback loops (i.e., positive feedbacks). I presented much of this information at the Bluegrass Bioneers conference (Alex Smith at Radio Ecoshock evaluates my presentation here). More recently, I presented an updated version in a studio in Bolingbrook, Illinois. All information and sources are readily confirmed with an online search, and links to information about feedbacks can be found here.
Large-scale assessments
Intergovernmental Panel on Climate Change (late 2007): >1.8 C by 2100 (up to 4.5 C, depending upon emissions scenarios)
Hadley Centre for Meteorological Research (late 2008): ~2 C by 2100
Later in 2008, Hadley Center’s head of climate change predictions Dr. Vicky Pope calls for a worst-case outcome of more than 5 C by 2100. Joe Romm, writing for Grist, claims, “right now even Hadley [Centre] understands it [> 5 C] is better described as the ‘business-as-usual’ case.”
United Nations Environment Programme (mid 2009): 3.5 C by 2100
Anyone who does not know what Latent Heat is will have a false sense of security. It is not hard to understand if I do not use physics jargon. Place on a hot stove a pot of cold water containing 1 kg of ice cubes. Stir the ice water with a long thermometer and take temperature readings. My question is: When will the thermometer begin to show a rise in temperature? Answer: After all the ice has melted. In other words, all the heat from the stove would first all go into melting the ice, without raising the water temperature. The amount of heat entering a system without raising the temperature of the system is called Latent Heat. It takes 80 calories of heat to melt one gram of ice. So in this case, the first 80,000 calories of heat from the stove went into melting the 1 kg of ice first. Only when the ice is all gone will the water temperature rise, and it will do so until it reaches 100C, when the water will begin to boil. Once again, Latent Heat comes into play, and the water temperature will stabilize at the boiling point – until all the water have changed from liquid to vapour, at which point the temperature of the dry pot will rise to the temperature of the flame itself. So how does this apply to Earth’s climate? Consider the Arctic Ocean to be a gigantic pot of ice water, and the sun as the stove. For as long as there is still sea ice to melt, the Arctic Ocean will remain relatively cool, in spite of the ever increasing solar heat entering the Arctic ocean due to ever decreasing ice cover. When the sea ice is gone in the summer, as early as the latter part of this decade, the Arctic Ocean’s temperature will steeply rise, and when it does, so will the global mean temperature, and all hell will break lose (sic).
Between now and then, the Arctic Ocean continues to warm up. Some parts are warming faster than others, and ice is still providing a tremendous cooling impact where it persists.
As it turns out, the so-called 40-year lag is dangerously conservative. A paper in the 3 December 2014 issue of Environmental Research Letters indicates that maximum warming from carbon dioxide emissions occurs about one decade after a carbon dioxide emission. Rising emissions during each of the last many decades points to a truly catastrophic future, and not long from now.
Guy Callendar pointed out the delayed influence of rising carbon dioxide on temperature in a 1938 paper in the Quarterly Journal of the Royal Meteorological Society. The hand-drawn figure from the paper shown below clearly illustrates an irreversible rise in global-average temperature beginning about 1915, a few decades after the consumption of fossil fuels increased substantially. Callendar’s work was used by J.S. Sawyer in a 1972 paper published in Nature to predict an “increase of 25% CO2 expected by the end of the century … [and] … an increase of 0.6°C in the world temperature” with stunning accuracy.
Broadening the Perspective
Astrophysicists have long believed Earth was near the center of the habitable zone for humans. Recent research published in the 10 March 2013 issue of Astrophysical Journalindicates Earth is on the inner edge of the habitable zone, and lies within 1% of inhabitability (1.5 million km, or 5 times the distance from Earth to Earth’s moon). A minor change in Earth’s atmosphere removes human habitat. Unfortunately, we’ve invoked major changes.
We’ve clearly triggered the types of positive feedbacks the United Nations warned about in 1990. Yet my colleagues and acquaintances think we can and will work our way out of this horrific mess with the tools of industrial civilization (which, got us into this mess, as pointed out by Tim Garrett) or permaculture (which is not to denigrate permaculture, the principles of which are implemented at the mud hut). Reforestation doesn’t come close to overcoming combustion of fossil fuels,str as pointed out in the 30 May 2013 issue of Nature Climate Change. Furthermore, forested ecosystems do not sequester additional carbon dioxide as it increases in the atmosphere, as disappointingly explained in the 6 August 2013 issue of New Phytologist. Adding egregious insult to spurting wound, the latest public-education initiative in the United States — the Next Generation Science Standards — buries the relationship between combustion of fossil fuels and planetary warming. The misadventures of the corporate government continue, even as collapse of ecosystems is fully under way. As pointed out in the April 2013 issue of PLoS ONE — too little, too late for many ecosystems — “catastrophic collapses can occur without prior warning.”
Let’s ignore the models for a moment and consider only the results of a single briefing to the United Nations Conference of the Parties in Copenhagen (COP15). Regulars in this space will recall COP15 as the climate-change meetings thrown under the bus by the Obama administration. The summary for that long-forgotten briefing contains this statement: “THE LONG-TERM SEA LEVEL THAT CORRESPONDS TO CURRENT CO2 CONCENTRATION IS ABOUT 23 METERS ABOVE TODAY’S LEVELS, AND THE TEMPERATURES WILL BE 6 DEGREES C OR MORE HIGHER. THESE ESTIMATES ARE BASED ON REAL LONG TERM CLIMATE RECORDS, NOT ON MODELS.”
In other words, near-term extinction of humans was already guaranteed, to the knowledge of Obama and his administration (i.e., the Central Intelligence Agency, which runs the United States and controls presidential power). Even before the dire feedbacks were reported by the scientific community, the administration abandoned climate change as a significant issue because it knew we were done as early as 2009. Rather than shoulder the unenviable task of truth-teller, Obama did as his imperial higher-ups demanded: He lied about collapse, and he lied about climate change. And he still does.
How long will the hangover persist, after we’re done with the fossil-fuel party? According to University of Chicago oceanographer David Archer: “The climatic impacts of releasing fossil fuel CO2 to the atmosphere will last longer than Stonehenge,” Archer writes in his January 2008 book The Long Thaw. “Longer than time capsules, longer than nuclear waste, far longer than the age of human civilization so far.”
Self-Reinforcing Feedback Loops (also see analysis here)
1. This description combines subsea permafrost and methane hydrates in the Arctic. The two sources of methane are sufficiently similar to warrant considering them in combination.
By 15 December 2013, methane bubbling up from the seafloor of the Arctic Ocean had sufficient force to prevent sea ice from forming in the area. Nearly two years after his initial, oft-disparaged analysis, Malcolm Light concluded on 22 December 2013, “we have passed the methane hydrate tipping point and are now accelerating into extinction as the methane hydrate ‘Clathrate Gun’ has begun firing volleys of methane into the Arctic atmosphere.” According to Light’s analysis in late 2013, the temperature of Earth’s atmosphere will resemble that of Venus before 2100. Two weeks later, in an essay stressing near-term human extinction, Light concluded: “The Gulf Stream transport rate started the methane hydrate (clathrate) gun firing in the Arctic in 2007 when its energy/year exceeded 10 million times the amount of energy/year necessary to dissociate subsea Arctic methane hydrates.” The refereed journal literature, typically playing catch-up with reality, includes an article in the 3 February 2014 issue of Journal of Geophysical Research: Earth Surface claiming, “Sustained submergence into the future should increase gas venting rate roughly exponentially as sediments continue to warm.” Not surprisingly, the clathrate gun began firing in 2007, the same year the extent of Arctic sea ice reached a tipping point. Further confirmation the clathrate gun had been fired came from Stockholm University’s Örjan Gustafsson, who reported from the Laptev Sea on 23 July 2014: “results of preliminary analyses of seawater samples pointed towards levels of dissolved methane 10-50 times higher than background levels.” Jason Box responds to the news in the conservative fashion I’ve come to expect from academic scientists on 27 July 2014: “What’s the take home message, if you ask me? Because elevated atmospheric carbon from fossil fuel burning is the trigger mechanism poking the climate dragon. The trajectory we’re on is to awaken a runaway climate heating that will ravage global agricultural systems leading to mass famine, conflict. Sea level rise will be a small problem by comparison.” Later, during an interview with Vice published 1 August 2014, Box loosened up a bit, saying, “Even if a small fraction of the Arctic carbon were released to the atmosphere, we’re fucked.” Trust me, Jason, we’re there.
Simultaneous with the Laptev Sea mission, several large holes were discovered in Siberia. The reaction from an article published in the 31 July 2014 issue of Natureindicates atmospheric methane levels more than 50,000 times the usual. An article in the 4 August 2014 edition of Ecowatch ponders the holes: “If you have ever wondered whether you might see the end of the world as we know it in your lifetime, you probably should not read this story, nor study the graphs, nor look at the pictures of methane blowholes aka dragon burps.”
One of the authors of two research papers rooted in the Siberian Kara Sea concluded on 22 December 2014, “If the temperature of the oceans increases by two degrees as suggested by some reports, it will accelerate the thawing to the extreme. A warming climate could lead to an explosive gas release from the shallow areas.” As we’ve known for a few years, 2 C is locked in.
The importance of methane cannot be overstated. Increasingly, evidence points to a methane burst underlying the Great Dying associated with the end-Permian extinction event, as pointed out in the 31 March 2014 issue of Proceedings of the National Academy of Sciences. As Malcolm Light reported on 14 July 2014: “There are such massive reserves of methane in the subsea Arctic methane hydrates, that if only a few percent of them are released, they will lead to a jump in the average temperature of the Earth’s atmosphere of 10 degrees C and produce a ‘Permian’ style major extinction event which will kill us all.
Discussion about methane release from the Arctic Ocean has been quite heated (pun intended). Paul Beckwith was criticized by the conservative website, Skeptical Science. His response from 9 August 2013 is here.
Robert Scribbler provides a terrifying summary 24 February 2014, and concludes, “two particularly large and troubling ocean to atmosphere methane outbursts were observed” in the Arctic Ocean. Such an event hasn’t occurred during the last 45 million years. Scribbler’s bottom line: “that time of dangerous and explosive reawakening, increasingly, seems to be now.”
3. Siberian methane vents have increased in size from less than a meter across in the summer of 2010 to about a kilometer across in 2011 (Tellus, February 2011). According to a paper in the 12 April 2013 issue of Science, a major methane release is almost inevitable, which makes me wonder where the authors have been hiding. Almost inevitable, they report, regarding an ongoing event. Trees are tipping over and dying as permafrost thaws, thus illustrating how self-reinforcing feedback loops feed each other.
4. Peat in the world’s boreal forests is decomposing at an astonishing rate (Nature Communications, November 2011)
5. Invasion of tall shrubs warms the soil, hence destabilizes the permafrost (Environmental Research Letters, March 2012)
13. Summer ice melt in Antarctica is at its highest level in a thousand years: Summer ice in the Antarctic is melting 10 times quicker than it was 600 years ago, with the most rapid melt occurring in the last 50 years (Nature Geoscience, April 2013). According to a paper in the 4 March 2014 issue of Geophysical Research Letters — which assumes relatively little change in regional temperature during the coming decades — “modeled summer sea-ice concentrations decreased by 56% by 2050 and 78% by 2100″ (Robert Scribbler’s in-depth analysis is here). Citing forthcoming papers in Science and Geophysical Research Letters, the 12 May 2014 issue of the New York Timesreported: “A large section of the mighty West Antarctica ice sheet has begun falling apart and its continued melting now appears to be unstoppable. … The new finding appears to be the fulfillment of a prediction made in 1978 by an eminent glaciologist, John H. Mercer of the Ohio State University. He outlined the vulnerable nature of the West Antarctic ice sheet and warned that the rapid human-driven release of greenhouse gases posed ‘a threat of disaster.'” Although scientists have long expressed concern about the instability of the West Antarctic Ice Sheet (WAIS), a research paper published in the 28 August 2013 of Natureindicates the East Antarctic Ice Sheet (EAIS) has undergone rapid changes in the past five decades. The latter is the world’s largest ice sheet and was previously thought to be at little risk from climate change. But it has undergone rapid changes in the past five decades, signaling a potential threat to global sea levels. The EAIS holds enough water to raise sea levels more than 50 meters. According to a paper in the July 2014 issue of the same journal, the southern hemisphere’s westerly winds have been strengthening and shifting poleward since the 1950s, thus quickening the melt rate to the point of — you guessed it — “results that shocked the researchers.” A paper presented at the late 2014 meeting of the American Geophysical Union concludes, “comprehensive, 21-year analysis of the fastest-melting region of Antarctica has found that the melt rate of glaciers there has tripled during the last decade.”
In a Heinrich Event, the melt forces eventually reach a tipping point. The warmer water has greatly softened the ice sheet. Floods of water flow out beneath the ice. Ice ponds grow into great lakes that may spill out both over top of the ice and underneath it. Large ice damns (sic) may or may not start to form. All through this time ice motion and melt is accelerating. Finally, a major tipping point is reached and in a single large event or ongoing series of such events, a massive surge of water and ice flush outward as the ice sheet enters an entirely chaotic state. Tsunamis of melt water rush out bearing their vast floatillas (sic) of ice burgs (sic), greatly contributing to sea level rise. And that’s when the weather really starts to get nasty. In the case of Greenland, the firing line for such events is the entire North Atlantic and, ultimately the Northern Hemisphere.
As one result of the polar vortex, boreal peat dries and catches fire like a coal seam(also see this paper in Nature, published online 23 December 2014, indicating “the amount of carbon stored in peats exceeds that stored in vegetation and is similar in size to the current atmospheric carbon pool”). The resulting soot enters the atmosphere to fall again, coating the ice surface elsewhere, thus reducing albedo and hastening the melting of ice. Each of these individual phenomena has been reported, albeit rarely, but to my knowledge the dots have not been connected beyond this space. The inability or unwillingness of the media to connect two dots is not surprising, and has been routinely reported (recently including here with respect to climate change and wildfires) (July 2013)
23. Jellyfish have assumed a primary role in the oceans of the world (26 September 2013 issue of the New York Times Review of Books, in a review of Lisa-ann Gershwin’s book, Stung! On Jellyfish Blooms and the Future of the Ocean): “We are creating a world more like the late Precambrian than the late 1800s — a world where jellyfish ruled the seas and organisms with shells didn’t exist. We are creating a world where we humans may soon be unable to survive, or want to.” Jellyfish contribute to climate change via (1) release of carbon-rich feces and mucus used by bacteria for respiration, thereby converting bacteria into carbon dioxide factories and (2) consumption of vast numbers of copepods and other plankton.
26. Earthquakes trigger methane release, and consequent warming of the planet triggers earthquakes, as reported by Sam Carana at the Arctic Methane Emergency Group (October 2013)
The mechanism underlying methane release in these systems is poorly understood. If sunlight drives the process, as suggestd by a paper in the 22 August 2014 issue of Science, then amplification is expected over time as ponds and lakes are increasingly exposed.
28. Mixing of the jet stream is a catalyst, too. High methane releases follow fracturing of the jet stream, accounting for a previous rise in regional temperature up to 16 C in less than 20 years (Paul Beckwith via video on 19 December 2013).
29. Research indicates that “fewer clouds form as the planet warms, meaning less sunlight is reflected back into space, driving temperatures up further still” (Nature, January 2014)
30. “Thawing permafrost promotes microbial degradation o cryo-sequestered and new carbon leading to the biogenic production of methane” (Nature Communications, February 2014)
32. “Volcanologist Bill McGuire describes how rapid melting of glaciers and ice sheets as a result of climate change could trigger volcanoes, earthquakes, and tsunamis” (13 February 2014 issue of The Guardian)
35. Reductions in seasonal ice cover in the Arctic “result in larger waves, which in turn provide a mechanism to break up sea ice and accelerate ice retreat” (Geophysical Research Letters, 5 May 2014).
36. A huge hidden network of frozen methane and methane gas, along with dozens of spectacular flares firing up from the seabed, has been detected off the North Island of New Zealand (preliminary results reported in the 12 May 2014 issue of the New Zealand Herald). The first evidence of widespread active methane seepage in the Southern Ocean, off the sub-Antarctic island of South Georgia, was subsequently reported in the 1 October 2014 issue of Earth and Planetary Science Letters.
40. “During the last glacial termination, the upwelling strength of the southern polar limb of the Atlantic Meridional Overturning Circulation varied, changing the ventilation and stratification of the high-latitude Southern Ocean. During the same period, at least two phases of abrupt global sea-level rise—meltwater pulses—took place.” In other words, when the ocean around Antarctica became more stratified, or layered, warm water at depth melted the ice sheet faster than when the ocean was less stratified. (Nature Communications, 29 September 2014)
42. Dark snow is no longer restricted to Greenland. Rather, it’s come to much of the northern hemisphere, as reported in the 25 November 2014 issue of the Journal of Geophysical Research. Eric Holthaus’s description of this phenomenon in the 13 January 2015 edition of Slate includes a quote from one of the scientists involved in the research project: “The climate models need to be adding in a process they don’t currently have, because that stuff in the atmosphere is having a big climate effect.” In other words, as with the other major self-reinforcing feedback loops, dark snow is not included in contemporary models.
43. The “representation of stratospheric ozone in climate models can have a first-order impact on estimates of effective climate sensitivity.” (Nature Climate Change, December 2014)
47. According to a paper in the 19 January 2015 issue of Nature Geoscience, melting glaciers contribute subsantial carbon to the atmosphere, with “approximately 13% of the annual flux of glacier dissolved organic carbon is a result of glacier mass loss. These losses are expected to accelerate."
48. Arctic drilling was fast-tracked by the Obama administration during the summer of 2012.
As nearly as I can distinguish, only the latter two feedback processes are reversible at a temporal scale relevant to our species. Once you pull the tab on the can of beer, there’s no keeping the carbon dioxide from bubbling up and out. These feedbacks are not additive, they are multiplicative: They not only reinforce within a feedback, the feedbacks also reinforce among themselves (as realized even by Business Insider on 3 October 2013). Now that we’ve entered the era of expensive oil, I can’t imagine we’ll voluntarily terminate the process of drilling for oil and gas in the Arctic (or anywhere else). Nor will we willingly forgo a few dollars by failing to take advantage of the long-sought Northwest Passage or make any attempt to slow economic growth.
Greenhouse-gas emissions keep rising, and keep setting records. According to 10 June 2013 report by the International Energy Agency, the horrific trend continued in 2012, when carbon dioxide emissions set a record for the fifth consecutive year. The trend puts disaster in the cross-hairs, with the ever-conservative International Energy Agency claiming we’re headed for a temperature in excess of 5 C. The U.S. State of the Climate in 2013, published 17 July 2014 as a supplement to the July 2014 issue of the Bulletin of the American Meteorological Society, concludes:
On the topic of rapidity of change, a paper in the August 2013 issue of Ecology Letters points out that rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. In other words, vertebrates cannot evolve or adapt rapidly enough to keep up with ongoing and projected changes in climate.
How critical is Arctic ice? Whereas nearly 80 calories are required to melt a gram of ice at 0 C, adding 80 calories to the same gram of water at 0 C increases its temperature to 80 C. Anthropogenic greenhouse-gas emissions add more than 2.5 trillion calories to Earth’s surface every hour (ca. 3 watts per square meter, continuously).
Interactions among feedbacks are particularly obvious in the Arctic. For example, as reported in the 5 May 2014 issue of Geophysical Research Letters, “further reductions in seasonal ice cover in the future will result in larger waves, which in turn provide a mechanism to break up sea ice and accelerate ice retreat.”
It’s not merely scientists who know where we’re going. The Pentagon is bracing for public dissent over climate and energy shocks, as reported by Nafeez Ahmed in the 14 June 2013 issue of the Guardian. According to Ahmed’s article: “Top secret US National Security Agency (NSA) documents disclosed by the Guardian have shocked the world with revelations of a comprehensive US-based surveillance system with direct access to Facebook, Apple, Google, Microsoft and other tech giants. New Zealand court records suggest that data harvested by the NSA’s Prism system has been fed into the Five Eyes intelligence alliance whose members also include the UK, Canada, Australia and New Zealand.” In short, the “Pentagon knows that environmental, economic and other crises could provoke widespread public anger toward government and corporations” and is planning accordingly. Such “activity is linked to the last decade of US defence planning, which has been increasingly concerned by the risk of civil unrest at home triggered by catastrophic events linked to climate change, energy shocks or economic crisis — or all three.” In their 2014 Quadrennial Defense Review, the U.S. military concludes: “Climate change poses another significant challenge for the United States and the world at large. As greenhouse gas emissions increase, sea levels are rising, average global temperatures are increasing, and severe weather patterns are accelerating.” The global police state has arrived, and it’s accompanied by a subtle changes in Earth’s rotation that result from the melting of glaciers and ice sheets (i.e., climate change is causing Earth’s poles to shift).